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A Multilevel Domain Similarity
Enhancement Guided Network for

Remote Sensing Image Compression
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Abstract— Remote sensing image compression networks aim
to enhance the similarity between the input image and the
reconstructed image. The current network rarely considers
the potential relationship between the compression features of
different levels and the reconstruction features of the cor-
responding levels, which limits the improvement of remote
sensing image compression performance. In this article, a con-
cept of multilevel domain similarity is first proposed, which
fully develops the multilevel domain similarity between the
encoding and decoding processes to improve the quality of recon-
structed images. On this basis, a multilevel domain similarity
enhancement guided network (MDSNet) is proposed for remote
sensing image compression. First, an efficient compression base-
line network (BaselineA) was proposed, which realizes efficient
image compression with low computational complexity. Second,
a multilevel domain similarity enhancement module (MDEM)
was designed, which improved the quality of the reconstructed
image by enhancing the multilevel domain similarity. Third,
a global information-enhanced attention module (GIE-AM) was
constructed to enhance channel features and global features.
Finally, under the guidance of the total loss (LossTotal), which
is constructed by the proposed MDEM loss (MDEM-Loss),
an effective compression was implemented by the whole network
for remote sensing image compression. Experimental results
show that compared with some advanced compression models,
the proposed MDSNet can significantly improve compression
performance with lower computational complexity. In addition,
the reconstructed images obtained by the proposed method can
provide better classification performance, which further proves
that the proposed MDSNet helps to preserve more important fea-
tures of remote sensing images during the compression process.

Index Terms— Learned compression model, multihead
self-attention (MHSA), multilevel domains, remote sensing
image compression.
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I. INTRODUCTION

REMOTE sensing images are digital representations of
the earth’s surface information [1], [2], [3], [4], which

have many features that are difficult to reflect in natural
images, including land cover type, topography, landform, and
temperature. Therefore, they are widely used in many fields
such as environmental monitoring, meteorology, and geolog-
ical sciences [5], [6], [7], [8]. With the rapid development
of imaging technology, the spatial and spectral resolution of
remote sensing images continue to increase, and the amount
of data also increases exponentially. In addition, due to the
influence of factors such as imaging angle, shooting distance,
and atmospheric refraction, remote sensing images have the
characteristics of high information entropy, rich texture infor-
mation, mixed high-frequency and low-frequency features, and
weak correlation, which make it difficult for traditional image
compression methods to effectively compress remote sensing
images [9], [10], [11].

At present, some research results have been achieved by
common traditional image compression methods. For exam-
ple, Báscones et al. [13] proposed a method that combines
principal component analysis with JPEG2000 [12] to com-
press hyperspectral image data. Therefore, efficient remote
sensing image compression networks need to be designed and
developed urgently. In addition, BPG [14] and WebP [15],
which have better performance, have also been born in the
field of image compression. Among them, JPEG [16] and
JPEG2000 consist of three parts, including image trans-
formation, quantization, and entropy encoding. In general,
first, the image is compressed and dequantized. Second,
it retains valuable information through quantification. Finally,
the entropy coding is used to compress the decorrelated
coefficients. Traditional image compression methods can be
divided into vector quantization [17], predictive coding [18],
and transform coding [19]. Shannon’s rate–distortion theory
is based on vector quantization coding. Qian [20] proposed
a fast vector quantization algorithm for multispectral image
compression, which converts the input vectors into code
word indices that match the input vectors in the code-
book for data transmission and storage. Three-dimensional
multiband linear predictor (MBLP) adopts prediction-based
technology. It first eliminates the spatial redundancy of images
and then predicts the frequency band. Finally, it encodes
the prediction residuals through an entropy coder [21].
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Three-dimensional set partitioning in hierarchical trees
(SPIHT) is a transform method used for 3-D image com-
pression, which applies 3-D wavelet transform in both spatial
and spectral domains [22]. However, the application of tradi-
tional image compression methods to remote sensing image
compression has the following problems, such as high com-
putational complexity and lack of targeted processing for
the characteristics of remote sensing images, including high
information entropy, rich texture, mixed high-frequency and
low-frequency features, and weak correlation. These limita-
tions restrict the improvement of the compression performance
of remote sensing images.

In order to seek breakthroughs, relevant researchers focus
on neural network technology, which has become hot in
recent years. Classical deep learning-based image compres-
sion frameworks mainly include autoencoder (AE) [23], [24]
and variational AE (VAE) [25], [26]. The main reason is
that the image compression task mainly consists of two
symmetrical data processing processes, namely compression
and reconstruction. There is a similar, reversible relationship
between these two tasks, which means that networks with
symmetrical codec structures will perform better. Among
them, the VAE-based framework has more powerful image
reconstruction capabilities. This is due to the fact that VAE
has a continuous mapping space that AE does not have and
can reconstruct smooth images. In recent years, many excellent
VAE-based baseline networks have been proposed [27], [28],
[29], [30], [31], [32], [33], which have achieved rate–distortion
performance better than traditional image compression meth-
ods. The VAE-based image compression network consists of
three parts, including encoder, entropy encoding, and decoder.
These compression frameworks typically use neural networks
to preliminarily compress blocks of data, then map pixel
data into quantized representations, and finally use traditional
encoding to compress the data into the smallest form of
existence (bitstream). In addition, some compression models
introduce entropy models into the framework, such as Laplace
models, single Gaussian models, Gaussian mixture models,
and factorized entropy models, to introduce prior information
and achieve more accurate modeling [28], [30], [34], [35].
Therefore, many scholars have adopted deep learning-based
compression models to achieve efficient remote sensing image
compression [36], [37], [38], [39], [40]. It is worth men-
tioning that the common deep learning techniques used for
remote sensing image compression mainly include three types:
CNN-based image compression methods, Transformer-based
image compression methods, and GAN-based image compres-
sion methods. Tang et al. [41] proposed an end-to-end image
compression method by fusing graph attention and asymmetric
convolutional neural networks (ACNNs). This method effec-
tively overcomes the problem of common CNN paying too
much attention to the local features of the image, promotes
information interaction, and fully considers the interdepen-
dence between channels and position information. Li et al. [42]
proposed a deep learning-based image compression network
based on a Vision Transformer (ViT). This method blocks
the input image and adopts different types of Transformer
blocks in the encoder and decoder to achieve efficient image
compression. At low bit rates, it achieves relatively good

rate–distortion performance. Han et al. [40] proposed a new
end-to-end framework, namely the edge-guided adversarial
network, which aims to preserve sharp edge information and
texture information simultaneously. It leverages edge fidelity to
constrain and guide the network in optimizing the reconstruc-
tion of image structures, aiming to address the issue of local
smoothing in existing methods. The above methods achieve
good rate–distortion performance, but they all enhance the
quality of reconstructed images from a single factor (graph
structure, long-distance context information, edge information)
without comprehensively improving the quality of recon-
structed images.

The essence of the remote sensing image compression
framework is to improve the similarity between the original
image and the reconstructed image. The similarity between
the original image and the reconstructed image depends on
a variety of factors, such as the reconstruction quality of
high-frequency information, the recovery of long-distance con-
textual information, the influence of noise, and the strength
of the correlation between different features. How to com-
prehensively consider various factors to improve the quality
of remote sensing image reconstruction has become a serious
challenge.

In order to alleviate the above problems, this article pro-
poses a multilevel domain similarity enhancement guided
network (MDSNet) for remote sensing image compression.
It mainly enhances the overall similarity between the origi-
nal remote sensing image and the reconstructed image (the
similarity between the highest-level domains) from the per-
spective of enhancing the multilevel domain similarity of the
front, so as to comprehensively improve the quality of the
reconstructed remote sensing image. The MDSNet innovates
and optimizes the network from three aspects. In the first
aspect, the essence of the remote sensing image compression
network is to enhance the similarity between the input image
and the reconstructed image. In this article, the similarity of
the highest-level domain is improved from the perspective
of enhancing the multilevel domain similarity of the front.
In this article, we consider the compression process of the
encoder and the reconstruction process of the decoder as mul-
tilevel compression and multilevel reconstruction, respectively,
and treat the multilevel image in the compression process
and the multilevel image in the reconstruction process as
two different domains. This article refers to this similarity
between compressed and reconstructed domains at multiple
levels as multilevel domain similarity. First, a multilevel
feature interaction module (MFIM) and a multichannel infor-
mation extraction module (MIEM) are designed. These two
modules are used to form a multilevel domain similarity
enhancement module (MDEM), so as to realize multichannel
feature extraction and multilevel feature interaction. Sec-
ond, this article proposes a MDEM loss (MDEM-Loss) to
reconstruct the objective function of the network, so as to
guide the compression model to compress and reconstruct
remote sensing images with high quality. In the second aspect,
remote sensing images contain abundant global information
and channel characteristics. If this information is ignored,
the model may lose its understanding of important contexts
such as geomorphological features, and the current mainstream
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methods do not achieve efficient extraction and combination of
these two types of information. In this article, first, a channel
extrusion block (CEB) is designed to enhance the channel
information efficiently. In addition, the corresponding mul-
tihead self-attention (MHSA) is used to efficiently extract
global information. Finally, on the basis of these two modules,
a global information-enhanced attention module (GIE-AM)
was designed to enhance the extraction and combination of
channel features and global features. In the third aspect, CNN
has powerful feature extraction capabilities [43], [44], [45].
Researchers can adjust the size of the convolution kernel
to control the range of receptive field, so as to adjust the
focus of the network on extracting high- and low-frequency
information. However, high-quality global information extrac-
tion means that larger convolutional kernels are selected,
which leads to a sharp increase in the number of parameters.
In addition, common networks have not effectively analyzed
and processed the data distribution of images, which means
that they lack research on the latent relationship between the
number of channels and the image size in the process of com-
pression and reconstruction. Therefore, this article designs an
efficient remote sensing image compression baseline network
(BaselineA). In view of the characteristics of remote sensing
images, such as high information entropy, rich texture infor-
mation, mixed high-frequency and low-frequency features,
and weak correlation, high-quality image compression and
reconstruction under low complexity are realized by selecting
the reasonable convolution kernel sizes and redistributing
the number of channels. In summary, this article constructs
a low-complexity and high-performance MDSNet based on
the proposed MFIM, MIEM, MDEM, MDEM-Loss, CEB,
MHSA, GIE-AM, and BaselineA.

In this study, a large number of experiments were carried out
on remote sensing image datasets such as San Francisco [46],
NWPU-RESISC45 [47], and UC-Merced [48]. Experimental
results show that compared with other methods, the MDSNet
proposed in this article has superior performance in the eval-
uation indicators such as peak signal-to-noise ratio (PSNR)
and multiscale structural similarity index metric (MS-SSIM).
In addition, the effectiveness of MFIM, MIEM, MDEM,
MDEM-Loss, CEB, MHSA, GIE-AM, and BaselineA was
verified by a variety of ablation experiments.

The main contributions of this article are summarized as
follows.

1) In this study, an MDEM was proposed, which includes
two core components: MFIM and MIEM. The MDEM
can realize multichannel feature extraction and multi-
level feature interaction. In addition, an MDEM-Loss
was proposed for reconstructing the objective function of
the network. Therefore, the similarity between domains
at the highest level is improved through this enhance-
ment of the multilevel domain similarity of the front.

2) A GIE-AM was designed, whose core components
mainly include CEB and MHSA, to efficiently enhance
the extraction and fusion of channel features and global
features.

3) An efficient compression baseline network (BaselineA)
for remote sensing images was constructed. The network

considers the characteristics of high information entropy,
rich texture, mixed high-frequency and low-frequency
features, and weak correlation of remote sensing images
and achieves excellent compression performance at low
complexity by reasonably selecting the size of the convo-
lution kernel and redistributing the number of channels.

4) In this study, MFIM, MIEM, MDEM, MDEM-Loss,
CEB, MHSA, GIE-AM, and factorized entropy model
are effectively embedded into BaselineA to con-
struct a low-complexity and high-performance MDSNet.
Through a large number of experiments on three
datasets, the proposed MDSNet has been proven to sig-
nificantly improve compression performance for remote
sensing images with lower computational complexity.

The remainder of this study is organized as follows.
In Section II, the proposed MDSNet framework and the
details of each module are elaborated. In Section III, this
article comprehensively analyzes and compares the proposed
MDSNet with other compression methods through a large
number of experiments. In Section IV, conclusions and future
work are discussed.

II. METHODOLOGY

In this section, the proposed MDSNet is described in
detail, as well as the efficient basic framework BaselineA and
modules such as MFIM, MIEM, MDEM, MDEM-Loss, CEB,
MHSA, and GIE-AM.

A. Overall Framework of the Proposed MDSNet

The proposed MDSNet deals with the task of remote sensing
image compression from a new perspective of enhancing the
multilevel domain similarity of the front. It mainly uses the
efficient frameworks BaselineA, MDEM, and GIE-AM to
achieve high-quality remote sensing image compression. The
MDEM consists of three submodules, namely MFIM, MIEM,
and MDEM-Loss. The GIE-AM consists of two submodules,
namely CEB and MHSA. In addition, the loss function Losstotal
is established to coordinate the compression and reconstruction
between the basic network and the proposed module, so as to
achieve higher compression performance.

The proposed MDSNet uses VAE as the basic framework.
MDSNet mainly consists of the following parts: encoder,
decoder, MDEM-Loss, probability model, and an improved
rate–distortion optimization, as shown in Fig. 1. In the image
compression part, the encoder maps the remote sensing image
data blocks into preliminarily compressed latent representation
features by combining MFIM, MIEM, GIE-AM, and 2-D
convolutions with different scales and numbers of channels.
Then, the statistical redundancy is further removed by quan-
tization, arithmetic coding (AE), and probability model, and
the final bit stream is obtained. In the image decompression
part, the model uses the mean µi and scale σ 2

i parameters in
the probability model, as well as arithmetic decoding (AD),
GIE-AM, MFIM, MIEM, and 2-D convolutions with different
scales and numbers of channels to process the bit stream, so as
to reconstruct the image with high quality. All of the above
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Fig. 1. Overall structure diagram of the proposed MDSNet.

work is carried out in an orderly and efficient manner under
the guidance of the loss function Losstotal.

In Fig. 1, Le and Ld are the main encoder and main decoder,
respectively, which are utilized to learn the latent represen-
tation features of the remote sensing image. The probability
model mainly includes a hyperprior network (hyper encoder,
hyper decoder), Q (quantizer), AE, and AD, and the data
between AE and AD are the smallest form of data (bitstream)
existing in this model. In this article, the hyperprior network
is adopted to learn the entropy model on which entropy
coding depends. It is also used to generate the parameters
of the entropy model (i.e., mean parameter µi and scale
parameter σ 2

i ), which is modeled as conditional Gaussian.
The modules on the left and right sides represent MDEM,
mainly including MFIM, MIEM, MDEM-Loss, and various
convolutions. The MDEM-Loss is obtained by calculating the
loss between the multilevel feature map obtained by MDEM
in the compressed part and the multilevel feature map obtained
by MDEM in the reconstructed part. The loss used here is a
mean squared error (MSE), and Lossδ is adopted to represent
the MDEM-Loss. The multilevel losses in the middle represent
the difference between the feature map of the compressed

domain and the feature map of the reconstructed domain
when the domain is at the same level. Lossα represents the
difference between the first-order domains, which is called
the first-level difference loss in this article. Similarly, Lossβ
represents the second-level difference loss. Lossγ represents
the third-level difference loss. These three levels of loss are
collectively referred to as the multilevel domain similarity of
the front. The difference between the original image and the
reconstructed image is called the zero-level difference loss or
superlative-level difference loss. MSE can be expressed as

MSE =
1
m

m∑
i=1

(X̂ − X)2 (1)

where m denotes the number of pixels, X̂ denotes the recon-
structed image, and X denotes the original image. GIE-AM
denotes the global information-enhanced attention module,
which mainly includes CEB and MHSA. N denotes the
number of channels, ↓ denotes the downsampling, ↑ denotes
the upsampling. GDN denotes the generalized splitting nor-
malization function, and IGDN denotes the inverse of GDN.
They are nonlinear activation functions that are more suitable
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for the normalization of image data than other normalization
functions.

Specifically, based on the characteristics of remote sensing
images, such as complex background, rich information, and
weak correlation between features, this article studies the
low-complexity and efficient remote sensing image baseline
network (BaselineA), MDEM based on multiscale enhance-
ment of similarity, and GIE-AM based on enhanced channel
features and global features. Compared with the common
remote sensing image compression model, BaselineA adopts a
smaller convolutional kernel size to greatly reduce the number
of parameters. At the same time, in the main encoder, some
large convolutional kernels are used to compensate for the
important long-distance context information loss caused by
the use of small-size convolutional kernels. In addition, the
number of channels of the convolutional layer in the overall
framework was redistributed in order to extract the appropriate
features at the appropriate compression level. MDEM is a
multilevel domain feature map extraction module used to
enhance the multilevel domain similarity of the front with
MDEM-Loss, which mainly includes two components: MIEM
for multichannel feature extraction and MFIM for multilevel
feature interaction. MIEM is in the first-level domain, with
a large feature map and more spatial information. There-
fore, MIEM uses multiple point convolutions to extract and
superimpose spatial information, so as to enhance spatial infor-
mation. In addition, AvgPool2d and MaxPool2d are adopted
to pool the third-level domain feature map and the first-level
domain feature map obtained by MIEM, respectively. Then,
the pooled feature maps are fused and strengthened by atten-
tion mechanism and residual operation. Finally, a multilevel
domain feature map can be used for feedback to the net-
work and calculation of MDEM-Loss. In addition, GIE-AM
is mainly used to efficiently enhance channel features and
global features, and its core components include CEB for
enhancing channel information and MHSA for enhancing
global context information. Then, CEB combined the attention
mechanism and residual operation to reduce and ascend the
dimension of the high-dimensional feature map. This can
enhance the channel information in the remote sensing image
and obtain a feature map for input to the MHSA. MHSA
adopts a self-attention mechanism that can efficiently model
long-distance information and the multiple heads to speed up
the training speed of the network and the fusion of informa-
tion on different subspaces. In general, MDSNet efficiently
explores the latent relationship between remote sensing image
compression and reconstruction through BaselineA, MDEM,
and GIE-AM, so as to achieve high-quality compression and
reconstruction work.

B. Multilevel Domain Similarity Enhancement Module

At present, the common remote sensing image compression
methods are improved from one or several perspectives, such
as strengthening the extraction of high-frequency information,
improving the quality of global visual features, removing
the complex background noise of remote sensing images,
enhancing the correlation between features, and reducing
spatial and spectral redundant information. However, these

methods are not very efficient in compressing and recon-
structing various features of remote sensing images at the
same time. Therefore, from the perspective of improving
the overall similarity between the original remote sensing
image and the reconstructed image, this study enhances the
similarity between the highest-level domains by enhancing the
multilevel domain similarity of the front. Therefore, this article
constructs MDEM for enhancing multilevel domain similarity,
which mainly includes three core components, namely MIEM
for extracting multichannel information, MFIM for multilevel
feature interaction, and MDEM-Loss for guiding the network
to enhance multilevel domain similarity. The process of MIEM
can be represented as

IMIEM = WCONV1×1 ∗ Input + WCONV1×1 ∗ Input
+ WCONV1×1 ∗ Input. (2)

Here, Input represents the input image data block, ∗ represents
the convolution, W represents the weight parameter of the
point convolution, and IMIEM represents the output of MIEM.

The process of MFIM in the main encoder can be
represented as

IMFIM(Encoder)

= IMIEM(Encoder)

⊕ (WMaxPool2d(IMIEM(Encoder))+ WAvgPool2d(InputD)
⊙ (WSoftmax(WMaxPool2d(IMIEM(Encoder))

+ WAvgPool2d(InputD)))). (3)

Here, IMIEM(Encoder) represents the output of the MIEM of
the main encoder, W represents the weight parameters of
the convolutional layer, the Softmax layer, and the pooling
layer, ⊕ represents the pointwise addition, ⊙ represents the
Hadamard product, and IMFIM(Encoder) represents the multilevel
domain feature map of the main encoder.

The process of MFIM in the main decoder is similar to
that of the MFIM in the main encoder, except that the two
input positions of the MFIM are reversed. This process can
be represented as

IMFIM(Decoder)

= IMIEM(Decoder)

⊕ (WAvgPool2d(IMIEM(Decoder))+ WMaxPool2d(InputA)
⊙ (WSoftmax(WAvgPool2d(IMIEM(Decoder))

+ WMaxPool2d(InputA)))). (4)

Here, IMFIM(Decoder) represents the multilevel domain feature
map of the main decoder.

The process of MDEM-Loss can be expressed as

MDEM-Loss = LMSE(IMFIM(Encoder), IMFIM(Decoder)). (5)

Here, LMSE denotes the loss measured by MSE. In this article,
Lossδ is used to represent MDEM-Loss for convenience.

The overall structure of MDEM is shown in Fig. 2.
It mainly includes MIEM, MFIM, and MDEM-Loss. MIEM
uses three-point convolutions for the extraction and enhance-
ment of multichannel information. The reason why MIEM uses
multiple channels instead of a single channel for spatial infor-
mation extraction is that the input to MIEM is a large-scale
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Fig. 2. Schematic of the designed MDEM. InputA represents the third-order reconstruction domain feature map, InputB represents the first-order reconstruction
domain feature map, InputC represents the first-order compression domain feature map, InputD represents the third-order compression domain feature map,
OutputA represents the multilevel domain feature map of the reconstructed domain, OutputB represents the multilevel domain feature map of the compressed
domain, “MDEM of Encoder” represents the MDEM utilized in the main encoder part, while “MDEM of Decoder” represents the MDEM utilized in the
main decoder part, and MDEM-Loss represents the loss between the multilevel domain feature map of the compressed part and the multilevel domain feature
map of the reconstructed part. This loss is measured using the MSE.

feature map on the first-level domain. This kind of large-scale
feature map leads to more spatial information that needs to be
extracted. Therefore, the low information capacity of a single
channel will lead to the loss of some spatial information. The
reason for processing multichannel information by pointwise
addition is that the similarity between the first-level domain
feature maps has the greatest impact on the similarity between
the original image and the reconstructed image. Then, when
interacting the MIEM-processed first-level domain feature
information with the third-level domain feature information,
it is necessary to ensure that the first-level domain feature map
accounts for a high proportion of the MFIM output (multilevel
domain feature map). Therefore, pointwise addition is used
to further enhance the spatial information on the first-level
domain feature map. The core function of MFIM is to effi-
ciently model the latent relationship between the first-level
domain feature information and the third-level domain feature
information that have been processed by MIEM. It real-
izes the effective fusion of these two types of information,
so as to obtain a multilevel domain feature map with the
first-level domain features as the main feature, the second-level
domain features, and the third-level domain features as the
supplement. First, the first-level domain feature information

and the third-level domain feature information enhanced by
MIEM are extracted by AvgPooling2d and MaxPooling2d,
respectively. Second, the information on different levels is
fused by pointwise addition. Third, the fusion information
on different levels is multiplied by the attention coefficient
obtained by Softmax, so as to increase the discrimination
between different features. Fourthly, in order to ensure the
proportion of first-level domain features in multilevel domain
features, this article introduces a branch of MIEM-enhanced
first-level domain feature information at the end of MFIM.
Finally, MDEM calculates the loss between the multilevel
domain feature map of the main encoder and the multilevel
domain feature map of the main decoder by using MSE,
i.e., MDEM-Loss (Lossδ). In addition, in order to control the
influence of MDEM-Loss on the final network performance,
a weight coefficient (similarity weight ψ) is applied to Lossδ
which will be introduced into LossTotal. This is explained in
more detail in the Rate–Distortion Optimization section.

C. Global Information-Enhanced Attention Module

Remote sensing images are rich in global information and
channel information. However, the existing remote sensing
image methods either design a separate channel attention to
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Fig. 3. Schematic of GIE-AM. The left half is the channel attention of CEB, and the right half is MHSA. Conv2D, 3 × 3, 3N /4, N /2 represent the parameter
settings for convolution, respectively. 3 × 3 represents the size of the convolution kernel, 3N /4 represents the number of input channels, N /2 represents the
number of output channels, and the parameter settings of other convolutions are the same as above.

enhance the channel information or design the corresponding
global attention module to enhance the global visual features,
but they do not fully utilize the latent relationship between
the channel information and the global context information.
In this article, GIE-AM is designed to efficiently enhance
and fuse channel information and global context information,
which core components include channel attention of CEB and
MHSA. Remote sensing images contain a large amount of
channel information. Therefore, in neural networks, remote
sensing image data are usually mapped from low-dimensional
to high-dimensional to explore the latent relationship between
channels. However, the number of bands in remote sensing
images themselves is not as diverse as in hyperspectral images.
If it is mapped to too high dimensions, the channel information
feature will be attenuated and faded. This leads to the contra-
diction that remote sensing image data needs high-dimensional
mapping, but cannot be mapped in high dimensions. Therefore,
CEB is designed to first reduce the feature dimension and then
restore the feature dimension. This makes the channel features
more compact. The channel attention of CEB is

Outout = Input + WCEB(WCEB(Input))
⊙ WSigmoid(WCEB(WCEB(Input))). (6)

Here, Input represents the input data, WCEB represents the
weight parameter of CEB, WSigmoid represents the parameter
of the Sigmoid layer, and ⊙ represents the Hadamard product.

Another core component is MHSA. ViT has excellent
long-distance contextual information capture capability, which
enables the ViT-based model to exhibit excellent performance
across all levels of tasks. This powerful contextual information
capture capability is mainly derived from its core module, i.e.,
self-attention. On the basis of self-attention, MHSA achieves
faster training speed and information fusion in different sub-
spaces by introducing the multihead mechanism. The structure
diagram of MHSA is shown in Fig. 3. Its core is feature1,
feature2, and feature3, which map remote sensing image data
into different projection spaces. Then, tensor multiplication
is used to multiply the data on different projection spaces
to enhance the global visual features. The process of the

MHSA is

OutputMHSA

= WConv3×3 ∗ (WLinear(feature1 ⊗ (WDropout(WSoftmax(feature3

⊗ feature2))). (7)

Here, WLinear represents the weight parameter of the lin-
ear layer, WDropout represents the weight parameter of the
dropout layer, WSoft max represents the weight parameter of the
Softmax layer, and ⊗ represents matrix multiplication.

The process of GIE-AM feature extraction is shown in
Algorithm 1.

It is worth mentioning that GIE-AM does not simply extract
the rich channel features and global visual features in remote
sensing images but effectively integrates the two. First, the
channel attention of CEB combined with the attention mech-
anism was utilized to upgrade and reduce the dimensionality
of the channel features multiple times, thus compressing the
channel features and obtaining sufficient channel capacity.
Second, MHSA maps high-quality features into different
subspaces through the mechanism of multiple heads to fur-
ther explore the global context relationship. Through the
self-attention mechanism, the long-distance information and
low-frequency features are effectively strengthened. Finally,
through the combination of channel attention of CEB and
MHSA, the feature map of remote sensing image with effi-
cient fusion of channel features and global visual features is
obtained.

D. BaselineA

At present, the remote sensing image compression method
based on deep learning mainly has the following problems:
1) in the process of compression and reconstruction at different
levels, the number of channels is not allocated, resulting in the
inability to fully utilize the neural network and 2) the size of
some convolutional kernels is unreasonable, which leads to
the slow training of the network under the same sensory field.
In order to solve the above problems, BaselineA was designed
to achieve the same receptive field and better rate–distortion
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Algorithm 1 The Feature Extraction Process of Remote Sensing Images by GIE-AM
Input: Remote sensing data X ∈ Rb×c×h×w

1: for i=1 to T do
2: Perform CEB twice, the result denoted as X1 ∈ Rb×c×h×w.
3: Perform CEB twice and Sigmoid once, the result denoted as X2 ∈ Rb×c×h×w.
4: Perform Hadamard Product of X1 ∈ Rb×c×h×w and X2 ∈ Rb×c×h×w, the result denoted as X3 ∈ Rb×c×h×w.
5: Perform Pointwise Addition of X3 ∈ Rb×c×h×w and X ∈ Rb×c×h×w, the result denoted as XCEB ∈ Rb×c×h×w.
6: Perform Flatten, Reshape and Linear, the result denoted as attn ∈ Rb×n×3c.
7: Perform Split and Reshape, the result denoted as feature3 ∈ Rb×n×c, feature2 ∈ Rb×n×c and feature1 ∈ Rb×n×c.
8: Perform Reshape and Transpose, the result denoted as feature3 ∈ Rb×head×n×headd, feature2 ∈ Rb×head×headd×n f eature1 ∈

Rb×head×n×headd.
9: Perform Matrix multiplication of feature3 ∈ Rb×head×n×headd and feature2 ∈ Rb×head×headd×n , and then perform Softmax,
Dropout, the result denoted as attn1 ∈ Rb×head×n×n .
10: Perform Matrix multiplication of attn1 ∈ Rb×head×n×n and feature1 ∈ Rb×head×n×headd, the result denoted as attn2 ∈

Rb×head×n×headd.
11: Perform Transpose, Flatten, Linear, the result denoted as attn3 ∈ Rb×n×c.
12: Perform Transpose, Reshape, the result denoted as attn4 ∈ Rb×c×h×w.
13: Perform Conv3×3, the result denoted as attnGIE-AM ∈ Rb×c×h×w.

end for
Output: Feature map attnGIE-AM ∈ Rb×c×h×w after feature extraction.

Fig. 4. Schematic of BaselineA.

performance with fewer parameters. BaselineA is shown in
Fig. 4.

In order to make the reconstructed image smoother,
BaselineA uses the common VAE as the basic framework.
For problem 1), the number of channels in most of the con-
volutions in the common remote sensing image compression
framework is set to the same number. However, as down-
sampling progresses, the size of the feature map continues
to decrease, which means that there is less spatial information

available for learning. In this case, the network should pay
more attention to the channel information of the image.
Therefore, in this article, the number of downsampled channels
in the main encoder is reassigned, that is, as downsampling
proceeds, the number of channels is gradually increased, so as
to focus more on spatial information extraction when the fea-
ture map space size is large and more on channel information
extraction when the feature map space size is small. The main
decoder goes through a similar process. For problem 2), the
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main frame abandons the commonly used convolutional kernel
size 5 × 5 and chooses a smaller convolutional kernel 3 × 3 to
reduce the number of parameters. In addition, in order to
compensate for the loss of receptive field caused by the small
convolutional kernel, the convolution with size 7 × 7 is
selected for compression during the first downsampling of the
main encoder. The calculation process of the receptive field is

F(i) = (F(i + 1)− 1)× S + K . (8)

Here, F(i) represents the size of the receptive field in layer i ,
S represents the step size, and K represents the convolutional
kernel size.

The process of calculating the parameter quantity of the
convolution kernel is

P = h × w × c × c. (9)

Here, P represents the number of parameters, h represents
the width of the convolutional kernel, w represents the height
of the convolutional kernel, and c represents the number of
channels.

These two formulas can be used to calculate the total
number of parameters and the receptive field size consumed
by convolution in the main encoder and main decoder. By cal-
culation, the receptive field size of the main encoder is 61 and
the number of parameters is 112.5C2 for the common VAE
framework (convolutional kernel size 5 × 5 and channel
set to 3C/4). However, BaselineA (the main encoder) has
the receptive field size of 63 and the number of parameters
of 36.25C2. In comparison, it is found that the number of
parameters of BaselineA is only one-third of that of common
VAE frameworks under the premise of having almost the
same receptive field. This undoubtedly has a huge parametric
advantage.

E. Rate–Distortion Optimization

The goal of the compression frame is to achieve a balance
between compression and distortion. Therefore, a common
rate–distortion optimization strategy is introduced into the
compression framework to guide the efficient training of the
model, which can be expressed as

arg min LossTotal = R + λ D. (10)

Here, R represents entropy rate, which is the cross-entropy
between the latent edge distribution and the learning entropy
model. D represents the distortion between the original image
and the reconstructed image. Different bit rates can be con-
trolled by adjusting the penalty factor λ

R = R ŷ + Rẑ . (11)

Here, the bit rate consists of the latent representation informa-
tion ŷ together with the side information ẑ

R ŷ = −

∑
i

log2(pŷ(ŷ)) (12)

Rẑ = −

∑
i

log2(pẑ(ẑ)). (13)

Here, pŷ is an entropy model that can be learned, and p̂z

represents a hyper encoder.
In order to further improve the quality of image compres-

sion, a novel rate–distortion optimization strategy is proposed,
i.e., (14). MDEM-Loss (Lossδ) is introduced in LossTotal to
improve the multilevel domain similarity of the front, which
is essentially a loss between the multilevel domain feature map
of the main encoder and the multilevel domain feature map of
the main decoder. This new LossTotal increases the similarity
between the highest-level domains, thus efficiently optimizing
the training of the network. This rate–distortion optimization
strategy can be expressed as

arg min LossTotal = R + λ (D + ψLossδ). (14)

Here, ψ represents the weight coefficient of multilevel domain
loss, and Lossδ represents the MDEM-Loss.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A lot of experiments have been carried out on remote
sensing image datasets such as San Francisco [46],
NWPU-RESISC45 [47], and UC-Merced [48]. The selected
datasets contain a wealth of ground object information, which
can effectively evaluate the performance of the proposed
MDSNet method. In this section, the proposed MDSNet
method is compared with some excellent compression
methods, including traditional codecs and deep learning-based
compression models. Traditional image compression methods
include JPEG2000 [12], BPG [14], and WebP [15], and
compression models based on deep learning include
Minnen et al. [28], Minnen et al. (mean) [28], Ballé et al.
(hyperprior) [29], Ballé et al. (factorized-relu) [29], and
Tong2023 [49]. Experimental results show that the proposed
MDSNet method has the best performance in both PSNR and
MS-SSIM evaluation indicators. In addition, the reconstructed
images of different methods are evaluated by classification
task, which further verifies the superiority of the MDSNet
method.

A. Introduction to Remote Sensing Image Dataset

1) San Francisco Dataset: San Francisco is a dataset of
remotely sensed images from [46]. San Francisco is a remote
sensing image with resolution 17 408 × 17 408. It contains
information on various categories of features, such as build-
ings, coasts, roads, ports, and lakes. In this article, San
Francisco was cropped at a resolution of 256 × 256 pixels,
and 3000 valid images were selected from the cropped images
to form a dataset. This dataset is divided into a training set,
a validation set, and a test set at a ratio of 8:1:1. Fig. 5 shows
a partial sample of this dataset.

2) NWPU-RESISC45 Dataset: NWPU-RESISC45 is pro-
vided by Northwestern Polytechnical University (NWPU).
The dataset contains a total of 45 different remote sensing
image scene categories. Each category contains 700 images,
each with a resolution of 256 × 256 pixels. The dataset
contains a variety of geographical environments and scenarios,
including airports, deserts, churches, forests, and ports. The
140 images in each category were selected to form a dataset
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Fig. 5. Some images from the San Francisco dataset. (a) Building.
(b) Coastline. (c) Highway. (d) Basketball court. (e) Tennis court. (f) Port.
(g) Car park. (h) Forest. (i) Farmland. (j) Lake.

Fig. 6. Some images from the NWPU-RESISC45 dataset. (a) Airports.
(b) Basketball court. (c) Sand beach. (d) Bridge. (e) Desert. (f) Church.
(g) Clouds. (h) Forests. (i) Ports. (j) Island.

Fig. 7. Some images from the UC-Merced dataset. (a) Farmland. (b) Plane.
(c) Baseball stadium. (d) Sand beach. (e) Building. (f) Forest. (g) Highway.
(h) Golf course. (i) Port. (j) Overpass.

of 6300 remote sensing images, which was then divided into
a training set, a validation set, and a test set at a ratio of 8:1:1.
Fig. 6 shows a partial sample of this dataset.

3) UC-Merced Dataset: UC-Merced is a remote sens-
ing image dataset provided by the University of California,
Merced. The UC-Merced dataset consists of 21 different cate-
gories, each consisting of 100 images. A total of 2100 images
are included, each with a resolution of 256 × 256 pixels.
These images include farmland, airports, forests, ports, and
islands. The UC-Merced dataset is divided into a training set,
a validation set, and a test set at a ratio of 8:1:1. Fig. 7 shows
a partial sample of this dataset.

B. Evaluation Indicators

To evaluate the quality of reconstructed images, two com-
monly used evaluation metrics are adopted, i.e., PSNR and
MS-SSIM. In the part of remote sensing scene image classifi-
cation, the overall accuracy (OA) and confusion matrix (CM)
are also used to measure the classification performance.

1) PSNR: PSNR compares the reconstructed image to the
original image from the point of view of the mean square error.

The higher the PSNR value, the higher the fidelity of the
reconstructed image. The PSNR can be represented as

PSNR(X, X̂) =
1
C

C∑
i=1

10 log10

(
max2(X i )

MSEi

)
. (15)

Here, MSE(X, X̂) = (1/H × W × C)∥X − X̂∥
2
F , max2(X (i))

represent the square of the largest pixel in the i th band, and
C represents the number of bands.

2) MS-SSIM: MS-SSIM is a multiscale structural similarity
index. It measures the difference between the original image
and the reconstructed image by merging image details at
different resolutions. The value ranges from 0 to 1, with higher
values indicating higher similarity and higher quality of the
reconstructed image. The MS-SSIM can be expressed as

DMS-SSIM

= 1 −

M∏
m=1

 2µXµ⌢
X

+ N1

µ2
X + µ2

⌢
X

+ N1

αm
 2σ

X
⌢
X

+ N2

σ 2
X + σ 2

⌢
X

+ N2

ζm

.

(16)

Here, M represents the different resolutions, µX and µ⌢
X

represent the mean of the original image and the reconstructed
image, σX and σ⌢

X
represent the standard deviation between the

original image and the reconstructed image, σ
X
⌢
X

represent the
covariance between the original image and the reconstructed
image, αm and ζm represent the relative importance between
the two terms, and N1 and N2 are the constant terms to prevent
the divisor from being 0.

In order to clearly compare the differences in MS-SSIM
values, they are converted into decibel values. This process
can be expressed as

MS-SSIM = −10 log10(1 − DMS-SSIM). (17)

3) Classification Indicators of Remote Sensing Scenes: In
this article, two widely used remote sensing scene classifica-
tion evaluation indicators are adopted to measure the quality
of the reconstructed image, including OA and CM. The OA
value is obtained by dividing the number of correctly classified
images by the total number of test images, and it reflects the
overall performance of a classification model. CM reflects the
degree of confusion and detailed classification errors between
different scene categories. Each row in the CM represents
the true category, and each column represents the predicted
category.

C. Experimental Environment and Parameter Settings

In this study, the proposed MDSNet method is implemented
by PyTorch. The Adam optimizer was chosen. There are two
optimizers in this network: one is the main optimizer between
the main encoder and the main decoder, and the other is
the auxiliary optimizer between the hyper encoder and the
hyper decoder. For the main optimizer, the initial learning rate
is set at 10−4, and the optimal model of MDSNet will be
stored when the learning rate decays to 10−6 during network
training. For the auxiliary optimizer, its initial learning rate
is set at 10−3. During training, the batch size is set to 8.
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Fig. 8. Rate–distortion curves on San Francisco. (a) PSNR. (b) MS-SSIM.

Fig. 9. Rate–distortion curves on NWPU-RESISC45. (a) PSNR. (b) MS-SSIM.

In this experiment, the neural network models are trained on
an NVIDIA GeForce RTX 3090, and the traditional codecs
are performed on a CPU (i9-9900K CPU@3.60 GHz). For the
sake of fairness, all experiments in this article were conducted
in the above environment. The penalty coefficient λ used
in this article is [0.660, 0.508, 0.211, 0.072, 0.033, 0.013,
0.007]. The weight coefficient ψ for multilevel domain loss in
MDEM-Loss is set to 0.1. In GIE-AM, the number of heads
in the MHSA is set to 4. In the overall frame, the number
of channels N is set to 256. In the classification of remote
sensing scenes, the benchmark model used for testing was
the efficient multiscale transformer and cross-level attention
learning (EMTCAL) [50]. The dataset used for training is
NWPU-RESISC45, and the training-to-test ratio is 10%–90%.
The images used for compression and the images used for
remote sensing scene classification training are not crossed.
The reconstructed images are only used for testing the classi-
fication performance, not for the training of the classification
network.

D. Rate–Distortion Performance

In this experiment, all compression methods were evaluated
for rate–distortion performance using PSNR and MS-SSIM.
In this article, eight comparison methods are selected,
including three traditional image compression methods and
five image compression methods based on deep learning.
Figs. 8–10 show the rate–distortion performance curves
obtained by different compression methods on the datasets

San Francisco, NWPU-RESISC45, and UC-Merced, respec-
tively. It can be seen that the rate–distortion performance
of the method based on deep learning is better than that
of the traditional image compression method. For traditional
codec-based image compression methods, it can be found that
the rate–distortion performance of BPG is better than that
of WebP and JPEG2000 in most cases. The main reason
is that BPG can encode different color channels separately
through multichannel encoding techniques. This enhances
the precise control of a wide range of detailed features,
helping to reconstruct high-fidelity images. For the image com-
pression method based on deep learning, the rate–distortion
performance obtained by Ballé et al. (factorized-relu) [29]
is relatively poor. The main reason is that it only uses a
simple convolutional layer, which has a weak ability to extract
features. It can stack the number of convolutional layers to
improve the feature extraction ability to a certain extent,
but this will greatly increase the number of parameters and
inference time. Tong2023 achieved the highest PSNR and
MS-SSIM rate–distortion performance among all methods
except the MDSNet method on the datasets NWPU-RESISC45
and UC-Merced. The main reason is the use of an excellent
attention mechanism and a more reasonable residual convo-
lution module. However, Tong2023 achieves poor PSNR and
MS-SSIM rate–distortion performance on the San Francisco
dataset, which proves that the compression model is not
robust. Minnen et al. [28], Minnen et al. (mean) [28], and
Ballé et al. (hyperprior) [29], three deep learning-based image
compression models, have achieved average rate–distortion
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Fig. 10. Rate–distortion curves on UC-Merced. (a) PSNR. (b) MS-SSIM.

Fig. 11. Difference loss on the dataset San Francisco: (a) first-level difference loss, (b) second-level difference loss, and (c) third-level difference loss.

performance. The main reason is that although they have good
convolution modules, they lack a strong attention mechanism
and are more efficient LossTotal. However, the MDSNet method
proposed in this article achieves the highest PSNR and MS-
SSIM rate–distortion performance on three datasets at the
same time, and this performance advantage will be more
prominent at high bits per pixel. This superior rate–distortion
performance not only strongly proves the robustness of the
MDSNet method but also proves the effectiveness of the
MDSNet method, as well as MDEM, GIE-AM, and BaselineA.

E. Analysis and Verification of MDEM

In this section, some experiments are carried out to ver-
ify the effectiveness of the proposed MDEM. The baseline
network is BaselineA. The red curve is the BaselineA without
MDEM and is denoted as the original difference loss. The blue
curve is BaselineA with MDEM added, which is denoted as
the optimization difference loss. Figs. 11 and 12 show the dif-
ference loss curves on San Francisco and NWPU-RESISC45,
respectively. In addition, parts of Figs. 11(a) and 12(a) are

enlarged to show the relationship between the curves more
clearly. MDEM is designed to enhance the similarity between
the highest-level domains by enhancing the multilevel domain
similarity of the front. Through comparison, it is found that
on the San Francisco dataset, whether it is the first-level
difference loss, the second-level difference loss, or the third-
level difference loss, their losses are significantly reduced after
the introduction of MDEM in the network. This means a
significant reduction in the difference between the multilevel
image features in the compression domain and the multilevel
image features in the reconstruction domain. In other words,
the similarity between the compressed domain features and
the reconstructed domain features is greatly enhanced. The
difference loss experiments on NWPU-RESISC45 also con-
firm the effectiveness of the MDEM and also illustrate the
strong robustness of MDEM.

F. Visualization Comparison of Reconstructed Images

In order to further verify the effectiveness of the pro-
posed MDSNet, the reconstructed images obtained by different
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Fig. 12. Difference loss on the dataset NWPU-RESISC45: (a) first-level difference loss, (b) second-level difference loss, and (c) third-level difference loss.

Fig. 13. Visual comparison of reconstructed images obtained by different methods on the San Francisco dataset. (a) Original. (b) Minnen et al. (bpp: 0.297;
PSNR: 31.12; MS-SSIM: 9.48) [28]. (c) Minnen et al. (mean) (bpp: 0.298; PSNR: 30.93; MS-SSIM: 9.44) [28]. (d) Ballé et al. (hyperprior) (bpp: 0.294;
PSNR: 30.93; MS-SSIM: 9.52) [29]. (e) Ballé et al. (factorized-relu) (bpp: 0.295; PSNR: 29.41; MS-SSIM: 8.86) [29]. (f) Tong2023 (bpp: 0.303; PSNR:
30.92; MS_SSIM: 9.40). (g) JPEG2000 (bpp: 0.309; PSNR: 22.73; MS-SSIM: 2.46). (h) Webp (bpp: 0.413; PSNR: 24.48; MS-SSIM: 4.39). (i) BPG (bpp:
0.307; PSNR: 24.65; MS-SSIM: 3.97). (j) MDSNet (bpp: 0.301; PSNR: 31.36; MS-SSIM: 9.86.)

compression methods are compared. Figs. 13 and 14 show
the comparison results of different methods on the San Fran-
cisco dataset and the NWPU-RESISC45 dataset, respectively.
Fig. 13 shows the visual experimental results with a bit rate
of 0.3 bpp, and Fig. 14 shows the visual experimental results
with a bit rate of about 0.25 bpp. Fig. 13 includes the original
image and nine reconstructed images obtained by different

methods. Fig. 13 shows a diagram of a city building. The
roof area in the upper left corner and the square building
area in the middle area were enlarged. For the traditional
image compression method, the rate–distortion performance
of BPG is significantly higher than that of JPEG2000 and
WebP. In the image reconstructed by BPG, the edge texture
of the object in the roof area in the upper left corner is
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Fig. 14. Visual comparison of reconstructed images obtained by different methods on the NWPU-RESISC45 dataset. (a) Original. (b) Minnen et al. (bpp:
0.260; PSNR: 33.26; MS-SSIM: 7.73) [28]. (c) Minnen et al. (mean) (bpp: 0.257; PSNR: 33.20; MS-SSIM: 7.67) [28]. (d) Ballé et al. (hyperprior) (bpp:
0.263; PSNR: 33.30; MS-SSIM: 7.64) [29]. (e) Ballé et al. (factorized-relu) (bpp: 0.261; PSNR: 31.87; MS-SSIM: 7.49) [29]. (f) Tong2023 (bpp: 0.263;
PSNR: 33.57; MS-SSIM: 7.76). (g) JPEG2000 (bpp: 0.257; PSNR: 22.40; MS-SSIM: 1.92). (h) Webp (bpp: 0.249; PSNR: 22.69; MS-SSIM: 2.13). (i) BPG
(bpp: 0.259; PSNR: 24.26; MS-SSIM: 3.72). (j) MDSNet (bpp: 0.262; PSNR: 33.92; MS-SSIM: 8.02).

clearer, and the square building area in the middle area retains
more stripe information. However, the JPEG2000 and WebP
reconstruction areas have lost some of the details and are
blurred. The main reason is that BPG uses multichannel
encoding technology, which improves the ability to reconstruct
detailed features. For the image compression method based
on deep learning, the reconstructed images show a relatively
good visualization, but there is still a certain gap with the
proposed MDSNet method. In Fig. 13, there are some artifacts
and noise in the local area of the reconstructed image by
Minnen et al. (mean) [28], Ballé et al. [29], Ballé et al.
(factorized-relu) [29], and Tong2023. In the reconstructed
images of Minnen et al. (mean) [28], Ballé et al., Ballé et
al. (factorized-relu) [29], and Tong2023, the discrimination
between pixels at the edge of the image is too low, and
the transition between pixels is too coarse. This leads to
color flattening and distortion in the reconstructed image.
Finally, compared with Minnen et al. [28], which has a
relatively good visual effect in the comparison method, the
reconstructed image quality of MDSNet has more detailed
features. However, Minnen et al.’s [28] reconstruction image
is too smooth between pixels, which leads to the loss of some
detailed information. In Fig. 14, MDSNet also achieves the
best visualization result. From the perspective of visualization,
the above experiments further illustrate the effectiveness of the
proposed MDSNet.

G. Ablation Experiments

In this article, some ablation experiments are performed to
verify the effectiveness of each component. Figs. 15 and 16
show the results of ablation experiments on the San Francisco

dataset and the UC-Merced dataset, respectively. In these fig-
ures, 1) MDSNet represents BaselineA, which is the baseline
network of this ablation experiment; 2) MDSNet (MDEM)
represents the integration of MDEM based on BaselineA;
3) MDSNet (GIE-AM) represents the integration of GIE-AM
based on BaselineA; and 4) MDSNet (MDEM + GIE-AM)
stands for MDEM and GIE-AM based on BaselineA. As can
be seen from Figs. 15 and 16, the rate–distortion performance
of BaselineA is the lowest in most cases. MDSNet (MDEM)
outperforms BaselineA at the same bit rate. This proves the
effectiveness of the method to improve the quality of the
reconstructed image by enhancing multilevel domain similarity
of the front. MDSNet (GIE-AM) also outperforms BaselineA
at the same bit rate. This indicates that the channel information
and global visual features in remote sensing images are
of great significance for the high-quality reconstruction of
images. The rate–distortion performance of MDSNet (MDEM
+ GIE-AM) is optimal at the same bit rate, and this per-
formance advantage will be more prominent as the bit rate
increases. This phenomenon shows that BaselineA, MDEM,
and GIE-AM achieve efficient fusion and can retain suffi-
cient high-frequency and low-frequency information to support
high-quality image reconstruction.

H. Discussion

In this section, the effectiveness of the MDSNet is further
verified from a new perspective by using the reconstructed
image for remote sensing scene image classification. The
dataset selected is NWPU-RESISC45. The image compression
methods used for comparison include Minnen et al. [28],
Minnen et al. (mean) [28], Ballé et al. (hyperprior) [29],
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Fig. 15. Ablation results of different methods on the San Francisco dataset. (a) PSNR. (b) MS-SSIM.

Fig. 16. Ablation results of different methods on the UC-Merced dataset. (a) PSNR. (b) MS-SSIM.

Fig. 17. OA of the reconstructed images obtained by different compression
methods for remote sensing scene image classification.

Ballé et al. (factorized-relu) [29], and Tong2023. The bench-
mark model for remote sensing scene classification is
EMTCAL [50], and the training–testing ratio is 10%–90%.
The reconstructed images are not used for the training of
remote sensing scene classification, but only participate in
the testing of classification performance. In order to ensure
the fairness of the experiment, the reconstructed images of
different compression methods were obtained at a bit rate of
0.81 bpp. Fig. 17 shows the OA obtained by different recon-
structed images for remote sensing scene image classification.
In terms of OA, the proposed MDSNet obtains the highest

OA value and achieves the best classification performance,
which is higher 0.55% than that of Minnen et al. [28],
higher 0.55% than that of Minnen et al. (mean) [28], higher
0.73% than that of Ballé et al. (hyperprior) [29], higher
0.73% than that of Ballé et al. (factorized-relu) [29], and
higher than 0.37% than that of Tong2023. Fig. 18 demon-
strates the CMs of reconstructed images obtained by different
compression methods when they are used for remote sensing
scene classification. In Fig. 18, the classification effect of Lake,
stadium, and river in MDSNet’s CM is better than those of
other comparison methods. This is mainly due to the fact that
there are a large number of global visual features in these
types of scenes, and the GIE-AM in MDSNet just effectively
enhances the channel features and global features. For remote
sensing scene image classification, the protection of complex
ensemble structure features and global visual features is the
key factor to improve the classification performance. In the
proposed MDSNet, the similarity of the overall geometric
structure between the original image and the reconstructed
image is enhanced by multilevel domain similarity through
MDEM. Then, the channel features and global visual features
are efficiently enhanced by GIE-AM. Finally, high-quality
discriminant features are obtained. This is the reason why the
proposed MDSNet network reconstruction image achieves the
best performance in remote sensing scene classification.

I. Complexity Analysis

In order to compare the computational complexity and
time consumption of different compression methods, some
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Fig. 18. CM of the reconstructed images by different compression methods. (a) Minnen et al. [28]. (b) Minnen et al. (mean) [28]. (c) Ballé et al. (hyperprior)
[29]. (d) Ballé et al. (factorized-relu) [29]. (e) Tong2023. (f) MDSNet.

experiments are conducted. All the compression methods
are tested on the same device and in the same envi-
ronment. The evaluation indicators include the amount of
parameters, floating point operations (FLOPs), GPU memory,
compression time, and reconstruction time. Table I shows
the computational complexity of these comparative methods

and the proposed MDSNet method when the input image
size is 3 × 256 × 256. By comparison, it is found that
the number of parameters of MDSNet is second only to
Ballé et al. (factorized-relu) [29]. It is worth mentioning that
although the number of parameters of Ballé et al. (factorized-
relu) [29] is less than that of the proposed MDSNet,
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TABLE I
COMPLEXITY COMPARISONS OF DIFFERENT COMPRESSION METHODS

the PSNR and MS-SSIM rate–distortion performance of
Ballé et al. (factorized-relu) [29] is much lower than that
of our method at the same bit rate. By comparing FLOPs,
it can be found that MDSNet achieves the minimal FLOPs,
which is only 51.41%, 51.90%, 52.47%, 53.56%, and 20.68%
of the FLOPs of Minnen et al. [28], Minnen et al. (mean) [28],
Ballé et al. (hyperprior) [29], Ballé et al. (factorized-relu) [29],
and Tong2023, respectively. This fully demonstrates the supe-
riority of the proposed MDSNet. For GPU Memory, MDSNet
is in the middle of all methods. The reason is that some net-
works in MDEM require parallel computing, which consumes
a certain amount of GPU resources. For compression time and
reconstruction time, it can be found that the codec speed of
MDSNet is much faster than that of Minnen et al. [28] and
Tong2023 methods, and the codec time is only one-tenth of
them. However, it is slightly inferior to the methods such as
Minnen et al. (mean) [28], Ballé et al. (hyperprior) [29], and
Ballé et al. (factorized-relu) [29], but the PSNR and MS-SSIM
of MDSNet are significantly higher than these methods at the
same bit rate. These experiments strongly demonstrate that
MDSNet can achieve excellent rate–distortion performance
with low complexity.

IV. CONCLUSION

This article proposes a novel MDSNet for the compression
of remote sensing images. First, BaselineA was constructed by
rationally allocating the number of channels in the network and
redesigning the convolutional kernel size. It can achieve a large
receptive field and good rate–distortion performance under
the premise of low parameter quantity. Second, MDEM was
constructed by designing MIEM for extracting multichannel
information, MFIM for multilevel feature interaction, and
MDEM-Loss for guiding the network to improve multilevel
domain similarity. It can improve the quality of the final recon-
structed image by enhancing the multilevel domain similarity
of the front. Third, GIE-AM was constructed by designing a
CEB to enhance channel features and an MHSA to improve
the ability to capture global visual features, which could
achieve efficient enhancement and fusion of channel features
and global visual features. Finally, MDSNet was efficiently
trained under the guidance of the proposed LossTotal strategy,
which can achieve the optimum rate–distortion performance
compared with other comparison methods and obtains the
reconstructed image with the best classification performance.
Specifically, at 1.1 bpp, MDSNet achieves PSNR improve-
ments of 7.4%, 8.8%, 7.7%, 23.9%, and 11.1% compared

to that of Minnen et al. [28], Minnen et al. (mean) [28],
Ballé et al. (hyperprior) [29], Ballé et al. (factorized-relu) [29],
and Tong2023, respectively. However, MDEM only fuses and
improves the similarity of features on the domain at three
levels. In the future, we will further explore the possibility of
more level domain feature interaction and similarity improve-
ment. In addition, we will further carry out more detailed
hierarchical processing on the compression and reconstruction
process of remote sensing images. By reducing the information
gap between the latent representation feature and the specific
task, the compression performance of remote sensing images
can be further improved.
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